
NRL/FR/5341--93-9524

New Results in Signal Design
For the AWGN Channel

MICHAEL J. STEINER

Target Characteristics Branch
Radar Division

January 31, 1993

93-04968

Approved for public release; distribution unlimited.



REPOT DCUMNTATON AGEForm Approved
REPOT DOUMETATIN PAE T OMB No. 0704-0188

Public reporting burde•r for this collection of informatiorn is estimated to veryage I how per response, including the time for revewring instructions. swo•;•rg emasting d•te souces.
gatfherng end maintairing the data needed, and completing " reviewing the collectior of informaeton. Send commenti tegardng thir burden estimaet w any other aspect of tMe
collection of information, including suggeatiorn for reducing this burden, to Waalhngton Headquarteres Services, Orectorate for information Operationse "n Repoitra 1216 Jeofetson
Davis Highway. Suite 1204. Arlington, VA 22202-4302, end to the Office of Management and Budget. Paetrwork Reduction Protect 10704-01880. Wmasrigton. DC 20603

1. AGENCY USE ONLY (Leeve Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 3 1, 'r,3

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

PE - 61153N
New Results in Signal Design for the AWGN Channel PR - 021-05-43

WU - DN480-006

6. AUTHOR(S)

Michael J. Steiner

7. PERFORMING ORGANIZATION NAME(S) and ADDRESS(ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5320 NRL/FR/5341--93-9524

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESSIES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Office of Chief of Naval Research
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION COD .

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 wordsl

The design of M average power constrained signals in white Gaussian noise (AWGN) is addressed. The long-standing strong
simplex conjecture which postulates that the optimal signals, under an average power constraint, are the vertices of a regular simplex,
is disproven. A signal set is shown that performs better than the regular simplex at low signal-to-noise ratios for all M > 7. This
leads to a theorem stating that for any fixed M > 7 no signal set exists that is optimal at all signal-to-noise ratios. Furthermore it is
found that the optimal solution at low signal-to-noise ratios is not an equal energy solution for any M > 7. The regular simplex is
shown to be the unique polytope that maximizes the minimum distance between signals. This result leads to the corollary that a
signal set which maximizes the minimum distance is not necessarily optimum. However, the regular simplex is shown to be globally
optimum in the sense of uniquely maximizing the union bound at all signal-to-noise ratios.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Signal design White Gaussian noise 28
Simplex conjecture M-ary communication I6. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY 'LASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-260-5500 Standard Form 298 (Rev. 2-891

Prescribed by ANSI Std 234t18

298-102



CONTENTS

1. INTRODUCTION ...................................................... 1

2. PRELIM INARIES .................... ................................ 3

3. COUNTEREXAMPLE TO THE STRONG SIMPLEX CONJECTURE ..................... 6

4. MAXIMIZATION OF MINIMUM DISTANCE ................................... 11

5. OPTIMALITY .......................................................... 13

6. CONCLUSIONS . ...................................................... 16

ACKNOWLEDGMENT ..................................................... 17

REFERENCES . ......................................................... 17

APPENDIX A - Representation of Inner Product Matrix ............................... 19

APPENDIX B - Proof of Monotonicity .......................................... 21

APPENDIX C - Derivation of Bounds . ......................................... 23

Accestoii For -L--'

NTIS C.RA&J
DTIC TAB El
U r ia n n o u nc ed El

JiJstiCiciOfl

D is t r ib u l i o n _ _-I 
- - -

Avadlabllity 
Codes

Avil( drid f orO•,t Sueciai



NEW RESULTS IN SIGNAL DESIGN FOR THE AWGN CHANNEL

1. INTRODUCTION

The design of efficient signal sets for transmission over channels that are contami-

nated by Gaussian noise has been an active area of research for many years. A signal set

that is more efficient than another will typically result in comparable savings in trans-

mitted energy. Hence, the determination of optimal signal sets is an important problem

from a practical communication perspective as well as from a theoretical standpoint. A

fair amount of work has been done in the area of signal design. Unfortunately, few results

exist on the optimality of signal sets (throughout the paper an optimal signal set is one

that maximizes the average probability of detection.) The optimal selection of M-signal
vectors embedded in even the most fundamental type of noise, white Gaussian noise,

generally is not known. One of the most famous conjectures of communication, dating

back to 1948, states that the optimal signal vectors axe vertices of an n dimensional

regular simplex for which M = n + 1(1, p. 741. When the signal vectors are constrained

only by an average power limitation, this conjecture is referred to as the strong sim-

plex conjecture (SSC) [2]. To avoid confusion, we refer to the conjecture of simplex

optimality when the signal vectors lie on the surface of a sphere, as the weak simplex

conjecture (WSC). The validity of the SSC implies the validity of the WSC, although

the converse statement is not true. Note that, irrespective of whether or not the signal

vectors are average power constrained or peak power constrained, the capacity of the ad-

ditive Gaussian noise channel (AGNC) is the same[3][4, p. 324]. Under the assumption

that the signal vectors are of equal energy, Balakrishnan proved, in his seminal work [5],

that the regular simplex is 1) optimal (in terms of maximizing the average probability

of detection) as the signal-to-noise ratio (SNR) A approaches infinity, 2) optimal as A

approaches zero, and 3) locally optimal at all A. He also proved that if a signal set does

exist that is optimal at all A, it is necessary the regular simplex signal set. In 1967,

Dunbridge [6] [7] extended Balakrishnan's work where only an average power constraint

is imposed on the signal set. Dunbridge proved that the regular simplex is 1) the optimal

signal set as A approaches infinity and 2) a local extremum at all A. lie also proved that.

the regular simplex must be the optimal signal set, if one does exist. For the case of
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M = 2, the regular simplex or antipodal signal set has been proven to be optimal at

all SNR for both the average and peak power constrained channels. D)unbridge proved,

under an average power constraint, that the regular simplex with Af 3 is optimal as

A approaches zero. Work on the weak simplex conjecture [81 was later shown by Farber

[91 to prove the conjecture for M < 5. It was proven by both Balakrishlnan [101 and

Weber [11, p. 215] that the regular simplex maximizes the minimum distance under a

peak power constraint.

Generally, the optimal design of signals for the noncoherent Gaussian channel is also

unknown. It has been long conjectured that the orthogonal signal set is the global opti-

mum. Weber [11, p. 269] proved that the orthogonal signal set is locally optimunm under

no bandwidth constraint. Stone and Weber [12] further proved the opt imality of the or-

thogonal signal set as A approaches infinity. The orthogonal signal set has been proven

to be the global optimum for all SNR for the case of A !-- 2 [131. Cases of restricted

dimensionality have been explored [14] for two dimensions and Af, 2, 3,. 6, 12.

A number of new results are presented in this paper. The major result that is

presented in Section 3 is a counterexample to the strong simplex conjecture. An explicit

signal set is shown to be better than the regular simplex for all Al > 7 under an average

power constraint. This leads to a proof establishing, for any Al > 7, that there are

no signal sets that are optimal at all signal-to-ncse ratios. In Section 1 we prove that

the regular simplex uniquely maximizes the minimum distance under an average power

constraint. A simple proof that the regular simplex maximizes the mininium distance

under a peak power constraint is also shown. This work leads to the cor.!ar~v that

a signal set that maximizes the mininmum distance between signials is -. ,,( necessarily

optimum. This is an interesting result, since much signal-design work has )Leen based oi

maximizing the minimum distance between signals because of the inherent sinmplicity of

the criteria. In Section 5 we address the global oIptimality of lhe regular simplex under

the performance measure of the union bound on the prol:ability of det ection. The union

bound is often used to assess the performnance of signdJ sets at. illedliii to high SN R when

computation of the probability of detection is intractable. It is proven that the regular

simplex uniquely maximizes the union boumd at all SNIR. The optiniality of signal sets

2
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at low signal-to-noise ratios is also examined. It is proven that the optimal solution at

low signal-to-noise ratios is not an equal cnergy solution for all M > 7. Additionally the

signal set presented in Section 3 is shown to be the optimal signal set when restricted

to all 1-D signal sets.

2. PRELIMINARIES

Consider the transmission of one of M signals si(t), I 1,.:.- , I . through a channel

contaminated with white Gaussian noise n(t). The signals can be represented through

a discrete time n dimensional vector representation si (the time discretization of a con-

tinuous time signal is discussed at length in Ref.[ll, p. 1271). After transmission we

receive the n dimensional vector

y =si +n I== I,...,M )

and wish to determine which of the M signals was transmitted. We define the SNR

parameter

A2 (2: = sTs. (2)

where T denotes transpose. It is assumed that n is a zero mean Gaussian vector with

covariance matrix equal to the n by n identity matrix. We define the normalized M

dimensional matrix of inner products o = (Aij) by,

sTs,

It immediately follows that
M

Z i = M. (3)
i~l

For an equal energy signal set, the A,,, i = 1,..., M are identical.

The optimum detector, in terms of maximizing the average probability of detection,

chooses that signal si, which maximizes p(yjsi)pj, where the a priori probability of the

ith signal is pi and p(ylsi) is the probability density function of y conditioned on si.

The results derived throughout the paper will assume that the signals are equally likely.

i.e., pi 7- -. In case of ties, we choose the signal with the smallest index from the s,

that tied. We can write p(ylsi)pi as,

p(yls,)p, I expl-I (y - s)T(y- S,)+ logpd. (4)
(27r)I 2  2

3
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Upon defining Ei(y) = yTsi -- ! + logp,, we see that Eq. (4) is maximized when we2

choose the signal corresponding to the rna.ximum of Ei(y). The average probability of

detection is,

Pd = -piP(E,(y) - maxE 3 (y)1s 1 )
i J

= - Z .J..Jfp(ysi)dyi"...dyn

11

-E )n2i) ] ... exp[--y y +~ E8 (y)]dyi . dyn.

where Ai corresponds to the decision region {yJE&(y) = maxj E.(y)} for cases where a

unique maximum of Ej(y) for j = 1,... , M exists. When a unique maximum does not

exist, we resolve ties by choosing the signal index from the smallest index among those

regions {yjEi(y) = maxj Ej(y)} that overlap. When defined in this manner the Ai are

disjoint, and the above can be rewritten as

Pd == (2I, /_exp[-IY y + maxE(y)]dy,...d (5)

where R, represents n-dimensional Euclidean space. This equation can be examined

by defining a n-dimensional Gaussian vector z with zero mean and identity covariance

matrix. The equation then becomes

Pd = E(exp[max Ei(z)]), (6)

where Ei(z) is Gaussian distributed with moments

E(Ei(z)) -- A,1 ,A2 + log p,
2

Cov(E,(z), Ej(z)) = s:

Note that the probability of detection in Eq. (6) is only a function of the SNR A, the

normalized matrix of inner products a, and the a priori signal probabilities p,. This is

because the Gaussian distribution is completely specified in terms of its first. and second

moments. Since a is invariant under orthogonal transformations inmposed on the signal

vectors, the probability of detection is invariant under any orthogonal transformation

of the signal vectors. It is known that the inner product. matrix or (Iram maltrix of the

signal vectors is positive semidefinite 115, p. 4071. The following lemma is important to

the forthcoming development:

4
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Lemma 1 - Every i.aner product matrix uniquely specifies a signal set-up to a geometric

isometry.

The proof is shown in Appendix A. This lemma shows that signal sets may be represented

in terms of their inner product matrices. Hence, we define the admissible inner product

matrices A to be those inner product matrices that are positive semidefinite and satisfy

the average power constraint in Eq. (3). It is seen that A is a compact convex set. The

boundary of A is the set of inner product matrices in A with determinant identically

zero. The interior is the set of inner product matrices in A with determinant greater

than zero. Since A is compact, and the probability of detection is a continuous function

of a [101, it follows that the vector a, which maximizes the probability of detection, is

found in A. It is shown in Ref. [7, p. 63] that a necessary condition for optimality is

that the sum of the signal vectors is identically zero. An equivalence of Fi s, 0 is [7,

p. 661
M M

S= 0. (7)
i=1 j=1

Another equivalence i'
M
ZAj=O, j=1,.--,M. (8)
i=1

Equation (7) specifies a hyperplane that contains nonadmissible as well as admissible a.

The intersection of the hyperplane with A contains the optimal a.

A partial ordering of A can be found as follows. Let two inner product matrices

a and a' have the same diagonal elements. If Aj _< A , for all i / j then Pd(A,ta') >

Pd(A, a). This follows, since the derivative of the detection probability with respect to

each Aij i $ j is nonpositive [7, p. 681.

Definition 1 {s,,.--, Sj } is a regular simplex if each si. 1 . . A., i.s at UhP: saMe

distance from each sj, j .1..., M where i / j. If additionally E, s, - 0. the rcgular

simplex is a regular simplex signal set.

The regular simplex signal set can be specified in terms of the inner product. matrix by

the relations,

kii = 1, i = 1, . M

Aij - M-1 i,jM- I,..-,M i./j. (9)
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The probability of detection of the simplex Pd. is given by Ref. 111, p. 1621

Pd.~ exp[I (x- M > 2 (10)

where

P(x) W f= -i 10 exp[--2dx. (11)

A necessary condition for optimality at low SNR is that the mean width of the polytope

generated by the signal set be a maximum. This is true for both the average power

constrained case [61 and the peak power constrained case [5]. The polytope of a set of

signal vectors {si} is the convex hull,

f{YlY = 7isi, -Y• i = 1, 7ij _! 0, i = I,'. ',.. }.

The mean width B is defined as

B=j max yTs, d'g(y.), (12)" fn I

where Q,, is the surface of an n dimensional unit sphere, y,, is a unit vector representing

a point on On, and p(y,) is a uniform probability measure over £4, as a function of y,.

3. COUNTEREXAMPLE TO THE STRONG SIMPLEX CONJECTURE

An explicit signal set is presented that hrjs a probability of detection greater than

the regular simplex signal set. Consider placing M - 2 signals at the origin, and placing

the remaining two vectors in a manner such that they form an antipodal signal set as

in Fig. 1. (Two equal length vectors s, and S2 are defined to be antipodal whenever

sts 2 = -11S1 1(s 211 where 11. -U represents the Euclidc.m or £2 norm) . XWe will refer to

this signal set as the low SNR l-D signal set (LI). Figure I shows the distance Z from

the origin to s, or s2, which is determined by Eq. (2), thus yielding z -- A When the

signals are equally likely, it is easily seen from Eq. (4) that the optimal detector chooses

the signal that is closest in Euclidean distance to the received signal. We define the

decision regions A, such that if y E Ai we choose S1. The decision regions are shown in

Fig. 1. If y E Am- {A3 ,', AM} any s,, i E {3, ., M} can be chosen. For simplicity,

we will assume that if y E A" then S3 is chosen. Denoting tP, as the probability of

detection of signal si, we can compute the average probability of detection of the Ll
signal set PdL1 as,

6
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M
A 1  A M A

3 2

S S,S'-,S S
3 4 M 2

Fig.I I'

I a

Fig. I -- LI Code

Pdl M A (13)
1d M P,

Now by symmetry Pd, Pd2 and

Pd, P(y EAIs , )

-4)(2) (14)

where 4(x) is defined in Eq. (11). It is seen that Pd , .. =Pd, 0 and denoting

E E {s 1,s 2 ,- ,SM} as the decision that is made regarding which signal is sent, we have

Pda = P(6 = S3 1S3 )

= P(=s 3 ly E AM,s 3 )P(y e AMss3) +P(6 =s3iy EA--,s 3 )P(A'fsS3 )

= 2D(2)-1 (M>3). (15)
2

Now the average probability of detection can be computed as

__ 1 oPd 1 - [2 Pd( Pd3]

(4, •4(- -1 (M :> 3). (16)
M 22

Proposition 1 Neighborhoods A E [0, 6 m), 6,M > 0 of A, exist where, t-Ll(A) is

strictly greater than Pd. (A) for all M > 7 and less than Pd, (A) for :3 < A <_ 6.

7
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Proof: Assume M is fixed. Since both :I-, :P.(A,M) and Id. I' !(A,'t) Al)
differentiable with respect. to A on A E [0, oo) and PdL,, ---: 11. 1 1 at A (0 it is

sufficient [16, p. 209] to prove that

(0 aPdL I (A, IA') M )d. (A,7)I
P,(0M) OA ,X-o > ,OA 0 (17

Now

PdL,(OM ) - __ 9A_ _
A VO

_ 4 72• - exp[- 2-jdx

U~ 00
A -O

1 (Ml > 3). (18)

Since the integrand of Eq. (10) is differentiable with respect to A on A E [0, c*), and the

derivative

M (x A ex (x - A M_-)2 -'(x)dx,
M-1 2

is integrable, it follows from Ref. [17, p.2151 that the order of differentiation and inte-

gration can be reversed. Hence,

xexp'(1) dx (19)
A(O,M) A=O 27r(M - 1) _K exp[ '

Since the integrand in Eq. (19) is negative for x < 0 it, follows that,

P'(0,Af) < -: )xexp[- ° l-(x)d. (20)

For large Al, the function 4,'-' resembles a step furction, with the localion of tle
step increasing in Al. The location of the step ;rcrea.,es slowly with Al•.so wv will

approximate the location of the step by clog(M - 1) and upper bound E(q. (2(0) bly

P1(0, M) < ciog(AM-u) clog(M" - 1) eXl)[-ý-A' - ("hlx(.' If X
0 A V' Jc log(,'a-1) -n. 7

where c > 0 is a constant to be optimized later, and log represents thl, nat uzral logarit rin.

Both terms above can be directly integrated yielding.
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Al [clog(Al - 1) (4 ( p'1(•~ log(.,,--l))-(M
((OM) < __ "

- [log(A! - 1) ,xp loo,((M , - log, ((Al - 1)")

- log, / - A_)
(A, 1)[ V 2-ri(M - 1) 'If - I '(~(1

We want to determine when P•L, > P'( or equivalently when r = ,/I < 1. Fromn Eq.

(21) and Eq. (18)

clog(M-i) + 2Cf(- -),M-'(•-

- _ __og(M - 1) + t 1 C2 kog(M-1) h(M, c). (22)

For each M define

cm = argmin h(M,c). (23)
C

We would like to determine CM in order to find the smallest N1 such that F•/P,'L < 1. By

using an available minimization routine, we found C30 = .78 for A = 30 and h(30, .78) -

.9896. To prove r < 1 for all M > 30 in Appendix B it is shown that h(M,c) is a

monotonically decreasing function of M for all M > 30.

The bound of Eq. (22) is not tight enough for the cases of Al < 30. In Appendix C,

a tighter upper bound is derived that is shown by Eq. (37) as

r < E 4 ) 1- . 4 P )'( 4)[ exp[-81, (24)
< (A- 1) o k 2(M - t)

where the bound improves as the positive integer k increases. To evaluate rigorously an

upper bound on r, we carry only five decimal places throughout any multiplication and

round up or down the fifth flecimal place as appropriate to tipper bound r. We define

t1 as the evaluation in this manner of E` V10), and t2 ats the evaluation of (D "f (4)

We therefore upper bound Eq. (24) by
f/(k + 4 M expl-81. (25)
S1-(Al-)t 2) (M_ 1)

We have computed tj and t2 by lower and upper bounding (P functions for given I. front

a table of the 4) function to five decimal places [18[. The results can be verified and are

shown in Table 1. This proves the result for 7 < M <

9
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Now we proceed to lower bound 7- for .,1 4, 5,6. 'Tlie rcguIlar siniiplux wavu lri'v.il

to be optimal for ,If 3 161 ýtt low signal-to-U( ise' rat ios. In A,.p\i, nlix ('. ight I ,wt.r

hound of Fq. (38) is derived

>! (A -1) 11r >/ - /<_____ I - / )[ (.()5),•,l -,, ._051') ,,( Ij
"V 2(. - 1) 2 ( .t- IA,

__�[_ 4 - 4 (k ,. - -"_.
(M 7_. 1) ,:•"-V'2 .I - 1

(2t)

A gain. we will carry five decimal places throughout the evalut ion. rounding up)(,r (rwn

appropriately to further lower bound r. We define q, as the evaluhtion in this mnarnerAl 4)( -1). ( _ ---
of - Al exp1 (- 1)[e'2 -) (l(I05)),%, ((-.05i') 1) (1"k I) q2 as theevlainof Ek-l IPA _)I 'ii
evaluation of I4 (), qk < 0fr (4), and q4 as the evaluatiion of F> At-r(,(). In Tablh

2 the lower bound is tabulated,

r > fj(/11) q- q, 4 7• q2  k- q] . A! e"xl[-8¶q 4 . (27)
v -"' 7" \- I)

Again, the values of the (P function were taken from Ref. 1181. Ini the comtputation of qj.

F,(-1) and F(-.05i) the values were rounded up to the fifth dej'inal place. and +(-1)

was rounded down. q2 is the result of rounding uIp), andt q:j and q4 are the results of

rounding down. In the case of A! - 5, k was found to be too large for the use of the

table. so in this case an approxination from Ref. 119, Eq. 26.2. t17 was used, which has

an error < 7.5- I 0-, and where we rounded t"he fift h decimal place up or down as before.

"I!'+ls the proposition is proven.

This result, apart fronm being a counterexamlh'e to the SS, hlads to< an inport at

theorem.

Theorem 1 For any fixed Al > 7 there is no signal set tho. i s ophimal a.'. oil signal-

to-noise ratzos.

Proof: 'Ihe proof follows from the proposition and T'heorem 14 in Ref. 161 that estab-

lished that the regular simplex is the only signal structure that is a local extrenmum at

all A > 0.

10
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4. MAXIMIZATION OF MINIMUM DISTANCE

The normalized distance di, between s, and sj, is the Fmuclidcan distance divided bl

A. We define the normalized minimum distance drn,, as the iniunnurn Euclidean distance

divided by the SNR A. Maximization of minimum Euclidean distance is equivalent to

maximization of di,. It was proven by both Balakrishnan 1101 and Weber I11. p. 2151

that the regular simplex uniquely maximizes the mininmm distance under a peak power

constraint Aii z 1, i = 1, - , M. Here a new shortened proof of this is given. Note that

maximizing the minimum distance for the peak power constrained channel is equivalent

to minimizing maxi/j Aij.

Theorem 2 - The regular simplex is the unique signal set that marimizes the minimurn

distance between the signal vectors under a peak power constraint A11 ---. i 1,.... 1.

Proof: The minimum value of maxi#j ,ij is -_ll since for any signal set (

2 j

implies that [11, p. 2151,

E E >. -- (28)
i j>i2

Denoting the matrix of inner products of the regular simplex as oa, any other matrix

a'/ a, that satisfies maxi 3 A = - ' must have at least one Aj strictly less than

M- which violates Eq. (28). Therefore a' = a,

Now we will generalize this result to the case where the signal vectors are only

constrained by Ej Aii = M. The difficulty found in solving this problem as opposed to

the prior problem is that the distance between the signal vectors si and s, no longer

depends only on the inner product Ai, i $- j. The lemmas that follow will help to

overcome this difficulty.

Lemma 2 - A signal set with E, Aii= M maximizes the minimum distanee di,, if
and only if Aj == d-, =--M for all i j.

Tj min M-1

Proof: It can be seen that

IZd' Z Aji + A23 - 2A3, (29))
i j>i i j>i

11
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At

(A - 1)ZAj 1- 2Z A,1
t:: ti i>i

and by Eq. (28)

d' < '12i j>i

Since Zi 3ji M(M-1) we (A)2M with equalitv
2 we have -,r --2 < A or ,, . . ...A

if and only if d- d,,.,• for all i / j. The latter condition is satisfied by the regular

simplex signal set.

Now, we only need to prove that the regular simplex is the unique signal structure

that maximizes dmin, since we know from above that it is a signal structure that maxi-

mizes dri,. Note that translations of a signal set. result in the same distances b)etween

signal vectors.

Lemma 3 -A necessary condition for maximizing the minimum distanct, is Ei s, - 0.

Proof: Suppose •isi -/ 0 and assume (w.l.o.g.) d,,, > 0. Consider the translation
f M- , s, si + f which implies Z* s' 0, By our earlier remark. d, -m ] dam dn.

Now,

E A si - f)T (sf - f)
i i

AZ A 2- 2 sIT f Tfrf
i i

= A'iA2 + fTf. (31)

Hence Ej Aii =yj A'i, where -1 > 1. Since E, A, = A, we have A ', =- At. so we

can rescale these signal vectors by forming another signal set s, 7si. Again note that

Zj s"' 0, E• ' . = M. The normalized distance between any two vectors of {s'!} is
d7 A'. + -"- 2AJ

--(A + Aj' _ 2Aij)

-dij

where the last equality follows by our earlier remark. Since -y > 1, d" > dj with e(luality

if and only if dij = 0. Since we assumed di.,, > 0, d" > dij and hence d" j" > d.,,z,.

which is a contradiction. This proves the necessary condition >L, s, - - 0.

12
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This leads to the theorem

Theorem 3 - The regular simplex signal set is the unique signal set that manmtizes

the minimum distance.

Proof: The result follows immediately from Lemmas 2 and 3 and from lDefinition I

This result leads to the corollary

Corollary 1 -- Given A > 0, there exist signal sets that maximize the minimum dis-

tance between signals but do not maximize I'd.

Proof: The result follows from Theorem 3, which states that the regular simplex is the

unique signal set that maximizes d,,.i,,; and from Proposition 1, which denionstrates that

the regular simplex is suboptimal in terms of Pd.

5. OPTIMALITY

In this section we address the optimality of signal sets in terms of both the average

probability of error and the union bound on that probability. The union bound is an

often used fairly tight approximation for low rates [20, p. 68] or relatively high SNRs

when computing the average probability of error is intractable.

Theorem 4 -- The regular simplex uniquely minimizes the union bound.

Proof: The union bound for the average probability of error of the ith signal, 1', is

expressed as [20, p. 601

>J1i
where P,,_ is the error probability, given the ith signal is sent. and the jth signal is the

only alternative. The average probability of error is given by

I

The union bound P(') for the average probability of error is,

p• < pj•,)_ 1

M

2

i j>1

13



MICHAEL J. STEINER

Now

where dij is the normalized Euclidean distance between s, and sj aLs defined in Section

4. Hence,
.W(E÷( A).

Sj>1 2

Let u = (d (, M-,),,) where we include all d, i / j. Let f(u,) 24)( - ' A

where u, is the ith element of u. Htence p1u) Z f) whr(. 1- is the

dimension of u. Now f(ui) is a convex U function on the interval 10,' ) since

f"(x) - 2exp[•j vNx exp[+j VA ,!3 > 0,

for all x > 0. Hence Jensen's inequality applies:

Al L LZ f () 2 ! f(ELU,)

A- 1 I
2 L (i j>i

The right-hand side of Eq. (33) is a strictly decreasing function of j, ,>, d(j. hence it

reaches its minimum value whenever E2 E4>i d? is maximum. We know from Lenmma 3

that Zi •>. d3 < M 2 with equality if and only if d,,,= By1 Theorem .3 equality

is achieved uniquely by the regular simplex, which is the only signal set that ninimis

the right-hand side of Eq. (33). Note that for the case d? = -t- Jensen's inequality is

satisfied with equality as both sides become

Al- I 2M2 Af(---I

This completes the proof.

Corollary 2 - There exists A > 0 and signal sets {s,} and {s'} such that I'(` < I'(")

whereas P, > P'. The probabilities of error and union bounds for the signal sets {st I

and {s{} are P,, FP and pu), p,ýu') respectively.

Proof: Follows from proposition Eq. (1) and the previous theorem with {s, } correspondl-

ing to the simplex.

We now will examine characteristics of optimal signal sets at, low SN{R.

Theorem 5 -- For all M > 7, the optimal solution at louw SNR is not an equal energy

solution.

14
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Proof: A necessary condition for optimality is that the intan wildth of the polytope

Eq. (12) be maximized [61. However, it was stated by lalakrishnan 15] that the regular

simplex maximizes Eq. (12) among all equal energy signal sets. Since proposition Eq.

(1) showed that the LI signal set is better than the regular simlplex for all Al > 7. it is
certainly better than all equal energy codes at low SNfI. Hlence, the opt timal solixtion is

not an equal energy solution.

Theorem 6 - For sufJficiently small A. the L1 sygnal set i2, uliqeIly op/mutt in thu

class of I-D signal sets that are average power constrained i.e., Atisf 2 < 1'.

Proof: A necessary condition for opt imality is again that the mean widlth of the polytopI

Eq. (12) be maximized. For signzll sets restricted to one d(imension this is e(qluivah'nT 10

maximizing,

B = max si 4 max -s,,
Z 2

:.. max si - rnin si (31)
i i

Since detection probability can be shown to be an increasing function of A 17, p. 621 the

solution will lie on the boundary A2 = p. It has been remarked by l)unbridge and c-n
also be seen by Eq. (12) that an optimal solution must have signal vectors either on the

boundary of the convex hull generated by the signal vectors or (lse at, the origin. Hence

three possibilities are to be considered:

Case 1: {si} = 0 for i I,.. A - r; and {Is} -- x, > 0 (or cquivahviltly {sj}

X, < 0) for j -M- r + 1,- -M;

Case 2: {si} = x, > 0 and {sj} -... r2 > xl, (or equivalently {s,, x, < 0,
{sj} = x 2 < x 1 ) for i = I,..., 1 - r andj -v .11 - r 1 1,....,A

Case 3: {si} --= 0 forni - 1- ,-,I -i r-p; and {s} I XI < 0 forj Al -r-, -

1,...,M-p and {sk} I: X2 >0fork Al -p I 1......1.

A necessary condition for optimnality 161 is that tilt ('(nve(x hull geln('rati'(l 1V tN. i
signal vectors contain the origin. lhence. (C';sv 2 is inmiendatelkcv disinisse(l. 13 is seVl Io
be maximized in C(',se I when r 1 or .rl A\/ -1 resulting in H1  W 71h1, luowcvvr,

the LI code of Case 3 results in Il1  A_271. tHence. ('asc, I is disnmissed. It can he
seen, for any code in Case 3 with r > 1, that we' can furtlhr (e('crease .rx y rearranging
r - 1 signals from x, to the origin. Thids will result ill an incre;ase ill 13 x2 -. rl. We

can increase x2 if p > 1. Hence, the optliinal signal sel helongs to ('ase 3 and is sulch
that r =- p =- 1. Now, we only need to prwov that, .r -J. [his [f)lVOws directly froln

the Cauchy-Schwartz inequality,

15
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Let. s 2 = s , ri X1 > 0, r2  --X2 > 0 so that the atoeVV bh'cotInI's,

where equality holds if and only if (x1 ,-.x2)'" is a multiple of to (1. 1). This will oulir

if and only if x, .. -x 2 --- A -k- proving optiniality as well as uni(queness.

6. CONCLUSIONS

The problem of optimal signal design for the white Gaussian noise channel has l)ee,

considered to be a fundamental problem for many years. We have exhibited a counlterex-

ample that disproves the long-standing strong-simplex conjecture. This countercxample

essentially relies on the tradeoffs between communication rate and performance. When

the communication rate is decreased by placing A1 - 2 signals at the origin, we can plaee

the remaining two signals at a relatively large distance with the intent of at least dis-

criminating between these two signals. At low signal-to-noise ratios, the performance, is

better than that of the regular simplex for which the distances betweein signal vectors is

smaller than the distance between the two signals of the counterexample. This difference

counteracts the effect that the high probability of error of the remainhing If -- 2 sigials

has on the performance of the L I signal set.

This result in conjunction with previous work led to several t,,e rcnis. It was cst al -

lished that the optimal signal set is indeed dependent on the signal-?I -noise rat it) for all

M'! > 7. The optimal signal sets at. low SNt for all 11 > 7 are ne(essair ilY imjual ,iwnrg,

signal sets. The design of signal sets, under the criteria of miaximiiizin• the miiiiiiini

distance, was also considered. Past results that established that the regiular siniplex

maximizes the minimum distance under a peak power constraiint were extended tit the

case of only an average power constraint. This led to the corollary that signal set.s that

maximize the minimum distance need not nmaximize the probalbility of detection. We

also proved that the regular simplex optimizes the union bound. In generral, optiiiza-

tion of the union bound does .-ot necessarily indicate niaximnization of probability of

detection. Finally the Ll signal set was shown t- be the optimal signal set. constrained

to one dimension.

16
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The determination of the optimal signal sets, which maximize the probability of

detection, remains in general unsolved for low SNR. Perhaps optimal ldesigns (an be(

found for some partition of the SNR range 10, ,c) as a function of .1f. TIhe weak simplex

conjecture has not been proven and the optimal design under a noncoherent assurnp-

tion remain unsolved. With few exceptions, optimal signal designs under a bandwidth

constraint remain unknown.
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Appendix A

REPRESENTATION OF INNER PRODUCT MATRIX

We prove that. an inner product matrix uniquely determines a signal set up to an isono-

etry. This is proven for complex matrices, although, we are only interested in real inner

product matrices. Let C, denote the set of all n by n complex 'lat rices.

Definition 2 -- Two signal sets A -- I s},,,''SM,} and B .{S, --St} ar- iso"miriC
if there exists a bijective transformation T A -4 B. callcit ari isoinetry, such that

d(Tsia, Tsj) = d(sia, sja) for all i, j whe:re d(x. y) is the tuclidcan distance from X 0o y.

Suppose that A and B are two signal sets of M vectors. Let a be the maxinmm of the

dimension of the vectors in A and B. Let A be a matrix whose columns are composed

of the signal vectors of the first signal set, and B the matrix whose columns are the

signal vectors of the second signal set. Suppose that the matrix of inner products

corresponding to A (i.e., A*A where * denotes the IHermitian transpose of A) is the

same as the inner product matrix corresponding to B. Embed A and B into n by n

matrices A' and B' by adding, if necessary, zeroes to the right and the bottom of each

matrix. It follows from Ref. [15, p. 4141 that there exists a unique positive semidefinite

matrix P (A'*A')½2 E C, and a unitary matrix V C C,, such that A' cx V'P [21].

Similarly, B' = VP (since the inner product matrix A'*A' is the same for both signal

sets), and hence A' .. (V'*)B'. The matrix VWV is unitary and unitary matrices are

easily shown to be isometrics. The additional zero columns can be removed from A'

and B' and the resulting matrices are still related by the unitary matrix V11"'. Since

the additional rows of zeroes are inconsequential, we conclude that two sifnal sets of 1!

vectors are isometric if the matrices of inner products A*A and IB*f are identical. Note

that the converse is not necessarily true, since an inner product matrix of a signal set e-

depends on the ordering of the columns of A.
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Appendix B

PROOF OF MONOTONICITY

We prove that Eq. (22) is monotonically decreasing for M > 30. Consider the first term

in Eq. (22)
r-log(M - 1)f I(M ) - V"-rc- ,,-= -- ý, *

It is easily seen that the derivative of f, with respect to M is,

fl, ( M ) = V/"2 - log(M - 1)

2(M- 1)i

Hence f•(n) < 0 whenever log(M- 1) > 2 or M > 6. Since f, is a continuous function of

M, the first term is a monotonically decreasing function of M for Al > 6. Next consider

the second term in Eq. (22)

M 1 )C2
log(M- 1)f2(M) 2(M 1) (M-1)

1 1 2og(M_l)+1 1 (C2j•g(M-j)+j
1 -V+ (l-) I

S.i\ -l--c
2  

(g(M-1) 1-'
2 

Iog(M-1)
- ((M-l) 2 +(M-l) 2 ). (35)

To analyze f 2(M) examine the function

g(M) = (M 1)1k(M),

where a(M) is any differentiable function of M. The derivative of 9(M) is

9,(M) - a(M)(M - l)a(M) + (M - 1)0,(M) log(M - 1)01(M).(M -1)

A sufficient condition for g'(M) < 0 for any M > 2 is a(M) < 0 and a&(M) < 0.

Therefore a sufficient condition for the first term of f 2 (M) to have a derivative that is
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negative is that < Iog(AI-1) < 0 and - c2  < 0. Both of these conditions are satisfied2 2(M-1)

fo, M > 2. The sufficient conditions for the second term of f 2(M) are 1̀2log(M -1) < 0-- 2

and - < 0. The first condition is satisfied whenever A! > 7 for .78 where
2(M-1)

Cm is defined in Eq. (23). The second condition is satisfied for M > 2. Thus, the second

term is monotonically decreasing for M > 7. In conclusion the bound in Eq. (22) is

monotonically decreasing for all M > 30.
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Appendix C

DERIVATION OF BOUNDS

We first derive an upper bound of r. Normalizing Eq. (20) by dividing through by Eq.

(18) we have,

r <M 2(M- 1) j xexp--214)M-(x)dx. (36)

This can be bounded by

r < M~ 8 [~f ~ I M 1\ k X2r< M 2(M-1) [k exp[--2•M-'(x)dx + k exp[--y]4u-'(x)dx +
4 X2 02

+ 4J exp[-214m-l(x)dx + xexp[--y]dx].

This can be integrated yielding

[MI - -( )M(0)] + 8[(M(8) I ....

+ 4[!M(4) - MM(4 k - + exp[-8]
+k - M(4 ) + /2--(M4- 1)

=- (PM(i )+4PM(4•)] + 2(M1)exp-8 1 " (37)

We now derive a lower bound of r. Normalizing Eq. (19) by dividing through by Eq.

(18) we have ,
M 00 X2r z-. x exp[- M-1-lA-(x)dx.

/2(M- 1) -0 2

This is lower bounded by,

MX ]iD-1 X1Af(dX r0. X2 -(~
f]xexp[ _.05 exp[___I• f_(x)dx_

r 2(M- 1) 2 I --.05 2

X2

f o x eXp [- --2-]4 M2'(x)dx3
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This can be integrated as

> _ (_ ) ex l, i-' I -V11-110. l)JE (.(i)1+"'(-.05,) f "(- •
+ x ex 1- 1)) ,.X. f1

2(A ~ A 4-I 2 I e~YA - ) V>TIý~ ( 7ri) -
+ -I M _ ) -e____--_l(I)A (x)I .

Upon substituting q, > ---- (- 1) .. 0l-5 i) 1
2(T M -1)2

>M(--1)1 the above is,

r > q, + /(p -- 1) 2

which can be bounded by,
M 2 4 2

_______k_ jx ~ k [k~l1\ x&[ qr > q) + " exp[- 2 1*^-'(x)d1 - k c4 'xt'{-' ] (

4(k - 1) 4 x 2 00 2
+ (k1) expi-2]- (x)dx + PM-1(4) xexp[-- ldx

q, + 4 [( 1 ( 8( 8)_ D1M()4 + 8 (4)M 12 - ()) + ...

4(k- 1) (4m(4) exP[_8(k ) (4)-k • Aa . , ( - 1 ) -4( -l -1

This reduces to

___A4____1 Al exp1-8] (P -' '(4)fl(A f q Ir 4 k-1 4(k--), (M(4)
f(A - 1) - 2(! -k k)

(:38s)
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